Paper Code Number: 2197		2024 (1st-A) INTERMEDIATE PART-I (11 th Class)			Rol	Roll No:			
MATHEMATICS PAPER-I GROUP-I TIME ALLOWED: 30 Minutes OBJECTIVE MAXIMUM MARKS: 20									
TIM	E ALLOWED: 30	Minutes	OBJECTIVE MA			XIMUM MARKS: 20			
Q.No.1 You have four choices for each objective type question as A, B, C and D. The choice which you thin is correct, fill that bubble in front of that question number, on bubble sheet. Use marker or pen to fill the bubbles. Cutting or filling two or more bubbles will result in zero mark in that question.									
S.#	QUE	STIONS	A	<u>B</u>		<u> </u>	<u> </u>		
1	Inverse of square m	natrix exists if it is:	Singular	Non-singular		Null	Symmetric		
2	If A is skew symmetric, then A^2 will be		Symmetric	Skew symmetric		Hermitian	Skew Hermitian		
3	Product of roots of	$x^2 - 5x + 6 = 0$ is:	-6	6		5	-5		
4	Roots of equation $cx^2 + ax + b = 0$ are complex if:		$b^2 - 4ac < 0$	$c^2 - 4ab < 0$		$a^2 - 4bc < 0$	$a^2 - 4ac < 0$		
5	$\frac{1}{x^3 + 1} = \frac{1}{x + 1} + \frac{1}{x^2}$ (Numenator of x^2)		Bx + c	B		C	B+C		
6	Next term of 1, 3,	12, 60, is:	120	180		240	360		
7		-2, 1, 4, 7, is:	3n-2	3n-4		3n-3	3n-5		
8	A die is rolled, pro on top are greater		$\frac{1}{2}$	$\frac{1}{3}$		$\frac{1}{4}$	$\frac{1}{6}$		
9	Sum of odd coefficient of $(1+x)^4$ is:	cients in expansion	8	16		18	6		
10	-1035° is coterm	ninal with	60°	300		45°	35°		
11	$\cos(\alpha+\beta)-\cos(\alpha+\beta)$		$-2\cos\alpha\cos\beta$	$2\cos\alpha\cos\beta$		$2\sin\alpha\sin\beta$	$-2\sin\alpha\sin\beta$		
12	Period of sec x i	s:	π	2π		3π	$\frac{\pi}{2}$		
13	$\sqrt{\frac{s(s-a)}{bc}}$		$\cos \frac{\alpha}{2}$	$\sin \frac{\alpha}{2}$		$\tan \frac{\alpha}{2}$	$\cot \frac{\alpha}{2}$		
14	tan[tan ⁻¹ (-1)] =		1	-1		$\frac{\pi}{4}$	$-\frac{\pi}{4}$		
15	$\sin x \cos x = \frac{\sqrt{3}}{4}$, then $x = $	$\frac{\pi}{2}$	$\frac{\pi}{3}$		$\frac{\pi}{6}$	$\frac{\pi}{4}$		
16	$3x + y^2 i = 1 - 2i^2$, then value of x is:	$\frac{1}{3}$	1		3	Zero		
17	If $z = \sqrt{3} + i$, the	en z =	4	$\sqrt{3}-i$		$-\sqrt{3}+i$	2		
18	Inverse of $p \rightarrow q$	q is	$\sim p \rightarrow \sim q$	$\sim q \rightarrow \sim p$		$\sim q \rightarrow p$	$q \rightarrow \sim p$		
19	Set A contains 4 of elements in its	elements, then number spower set $P(A)$:	8	12		16	4		
			Addition	Subtrac	tion	Square root	Multiplication		

Addition

 $\{1, -1\}$ is group with respect to:

Square root

13(Obj)(公公公公公)-2024(1st-A)-22000 (MULTAN)

Subtraction

MATHEMATICS PAPER-I GROUP-I									
NOTE: Write same question number and its parts number on answer book, as given in the question paper.									
SECTION-I									
	Attempt any eight parts. $8 \times 2 = 16$								
(i)	Simplify $(2,6) \div (3,7)$	(ii)	1	into real and imaginary parts $\frac{i}{1+i}$					
(iii)	$\forall z \in C$, prove that $ -z = z = \overline{z} = -\overline{z} $		Find the r	nultiplicative inverse of $-3-5i$.					
(v)	Express $\{x \mid x \in N \land x \le 10\}$ in descriptive and tabular form.								
(vi)	Show $B-A$ by Venn diagram when $A\subseteq B$.	(vii)	Find x and y if $\begin{bmatrix} x+3 & 1 \\ -3 & 3y-4 \end{bmatrix} = \begin{bmatrix} y & 1 \\ -3 & 2x \end{bmatrix}$						
(viii)	If $A = \begin{bmatrix} 1 & -1 \\ a & b \end{bmatrix}$, $A^2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$, find the values of a and b . (ix) Without expansion show that $\begin{vmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{vmatrix} = 0$								
(x)	Find roots of the equation $5x^2 - 13x + 6 = 0$ by using quadr	ratic for	mula.	•					
(xi)	Find four 4 th roots of unity. (xii) Solve the equation $4^x = \frac{1}{2}$								
	tempt any eight parts. $8 \times 2 = 16$								
(i)	Define Rational fraction.								
(ii)	Write in to partial fractions $\frac{8x^2}{(x^2+1)^2(1-x^2)}$ without finding constants.								
(iii)	Write the first four terms of the sequence $a_n = (-1)^n (2n-3)$								
(iv)	How many terms are there in A.P in which $a_1 = 11$, $a_n = 68$, $d = 3$?								
(v)	Sum the series $1+4-7+10+13-16+19+22-25+$ to $3n$ terms.								
(vi)	Find the sum of the infinite series $\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots$								
(vii)	How many signals can be made with 4-different flags when any	numbe	r of them a	re to be used at a time?					
(viii)	If ${}^{n}C_{8} = {}^{n}C_{12}$, find n .		-0						
(ix)	Determine the probability of getting 2 heads in two successive tosses of a balanced coin.								
(x)	Prove $2+6+18+$ $+2\times3^{n-1}=3^n-1$ for $n=1,2$								
(xi)	Calculate (21) ⁵ by means of Binomial theorem.	1	(xii)	Expand $(1+x)^{\frac{-1}{3}}$ up to 4 terms.					
4. Atte	empt any nine parts.		1	9 × 2 = 18					
(i)	In a right angle triangle ABC , prove that $\sin^2 \theta + \cos^2 \theta =$	= 1	*						
(ii)	Prove that $\cot^2 \theta - \cos^2 \theta = \cot^2 \theta \cos^2 \theta$			(iii) Prove that $\sin 3\alpha = 3\sin \alpha - 4\sin^3 \alpha$					
(iv)	Express the product as sum or difference $\sin 12^{\circ} \sin 46^{\circ}$		(v)	Prove that $\tan\left(\frac{\pi}{4} - \theta\right) + \tan\left(\frac{3\pi}{4} + \theta\right) = 0$					
(vi)	Define period of a trigonometric function.		(vii)	Find the period of $\csc \frac{x}{4}$					
(viii)	Draw the graph of $y = \tan x$ for $-\pi \le x \le \pi$.			h					
(ix)	Find area of triangle ABC, if $a = 4.33$, $b = 9.25$, $\gamma =$	56°44	ļ '						
(x)	Find R , if sides of triangle ABC are $a = 13$, $b = 14$, $c = 15$		(xi)	Show that $\frac{1}{2rR} = \frac{1}{ab} + \frac{1}{bc} + \frac{1}{ca}$					
(xii)	Without using calculator, show that $\cos^{-1} \frac{4}{5} = \cot^{-1} \frac{4}{3}$		(xiii)	Find the solution of $\sin x \cos x = \frac{\sqrt{3}}{4}$					
	SECTION-	II	1	44					
NOTE:	Attempt any three questions.			$3 \times 10 = 30$					
5.(a)	Use synthetic division to find the values of p and q if $x+1$ and $x-2$								
	are the factors of the polynomial $x^3 + px^2 + qx + 6$								
(b)	Use matrices to solve the system of equations $x_1 - 2x_2 + x_3 = -4$, $2x_1 - 3x_2 + 2x_3 = -6$, $2x_1 + 2x_2 + x_3 = 5$								
6.(a)	Resolve into partial fractions $\frac{1}{(x-1)^2(x+1)}$								
(b)	Show that the sum of n A.Ms. between a and b is equal to n times their A.M.								
7.(a)	Find values of n and r when ${}^nC_r = 35$, ${}^nP_r = 210$								
(b)	Using Mathematical induction to show that $1+2+2^2+2^2+2^2+2^2+2^2+2^2+2^2+2^2+2^2+$								
8.(a)	Prove without using calculator $\sin 19^{\circ} \cos 11^{\circ} + \sin 71^{\circ} \sin 11^{\circ} = \frac{1}{2}$								
(b)	Solve the triangle ABC in which $a = 36.21$, $c = 30.14$ and $\beta = 78^{\circ}10'$.								
9.(a)	Prove that $\frac{\tan \theta + \sec \theta - 1}{\tan \theta - \sec \theta + 1} = \tan \theta + \sec \theta$ (b) Prove that $\sin^{-1} \frac{4}{5} + \sin^{-1} \frac{5}{13} + \sin^{-1} \frac{16}{65} = \frac{\pi}{2}$								
	13-2024(1 st -A)-22000 (MULTAN)								

2024 (1st-A) Paper Code INTERMEDIATE PART-I (11th Class) Number: 2198 **GROUP-II** MATHEMATICS PAPER-I **MAXIMUM MARKS: 20 OBJECTIVE** TIME ALLOWED: 30 Minutes You have four choices for each objective type question as A, B, C and D. The choice which you think Q.No.1 is correct, fill that bubble in front of that question number, on bubble sheet. Use marker or pen to fill the bubbles. Cutting or filling two or more bubbles will result in zero mark in that question. S.# B **OUESTIONS** n^2 2nSum of binomial coefficients is: 30° 45° 900 60° 2 Trigonometric ratio of -330° is same as: 3 $\frac{3\pi}{2} + \theta$ lies in quadrant: 3rd 4th 2^{nd} 1st (-1, 1][-1, 1][-1, 1)(-1, 1)4 Range of $y = \sin x$ is: 90^{o} In right triangle, no angle is greater than: 80° 60° 5 45° $0 \le x \le 1$ $-1 \ge x \ge 1$ -1 < x < 1 $-1 \le x \le 1$ 6 Domain of $y = \sin^{-1}(x)$ is: π $\frac{\pi}{6}$ If $cox x = \frac{1}{\sqrt{2}}$, then reference angle is: Irrational Whole number Natural Rational Every non-recurring, non terminating number number number decimals represents: (-1, 0)(0,0)(0,1)The multiplicative inverse of complex (0,-1)9 number (0,1) is: Only one At least one Two At least two How many inverse elements correspond 10 to each element of group? $B \supseteq A$ $A \subseteq B$ $A \cap B$ $A \cup B$... Set containing elements A or B is 11 denoted by: $\sim q \rightarrow p$ $\sim p \rightarrow q$ $p \rightarrow q$ $q \rightarrow p$ $p \rightarrow q$ is called converse of: 12 Rectangular Symmetric Non-singular Singular The inverse of square matrix exists if A 13 $K^2 | A$ 2K|A|If A is a square matrix of order 2×2 K|A|then |KA| equals: -21 If $4^x = \frac{1}{2}$ then x is equal to: -2, 32, 3 -2, -3The roots of the equation $x^2 - 5x + 6 = 0$ Equivalent Proper Identity The fraction $\frac{x-3}{x+1}$ is: Improper 17 ab $-\sqrt{ab}$ 18 G.M between $\frac{1}{a}$ and $\frac{1}{b}$ is: 1 $\sum_{k=1}^{\infty} 1$ is equal to: n^2 n 1 n^3 20 $\frac{3!}{0!}$ is equal to: 12 6 ∞ 3 15(Obj)(☆☆☆☆)-2024(1st-A)-17000 (MULTAN)

	HEMATICS PAPER-I GROUP-II E ALLOWED: 2.30 Hours	SUBT	CTIVE	TM	AXIV	HIM MARKS: 80	
NOTE: Write same question number and its parts number on answer book, as given in the question paper.							
2 4		ECTIO	N-I	FIFT	M	8 × 2 = 16	
(i)	ttempt any eight parts. Simplify (2, 6) ÷ (3, 7)	(ii)	Find mu	Itiplicative inver	se of	····	
(iii)	Show that for all $z \in C$, $z\overline{z} = z ^2$	(iv)		$\frac{3}{\sqrt{6}-\sqrt{-12}}$			
(v)	For $A=\{1, 2, 3, 4\}$, state the domain and range of	f relatio	$n \{(x, y)\}$	$\frac{\sqrt{6-\sqrt{-12}}}{ x+y=5 }$			
(vi)	Define Semi group.	(vii)	If $A = \begin{bmatrix} -1 \\ -1 \end{bmatrix}$	$\begin{bmatrix} -2 & 3 \\ -4 & 5 \end{bmatrix}$, find A	-1		
(viii)	If $A = \begin{bmatrix} 2 & 3 \\ 1 & 5 \end{bmatrix}$, then show that $4A - 3A = A$	(ix)	If $A = \begin{bmatrix} \\ - \end{bmatrix}$	$\begin{bmatrix} 1 & 2 & -3 \\ 0 & -2 & 0 \\ 2 & -2 & 1 \end{bmatrix}$, the	n find	A_{12}, A_{22}	
(x)	Discuss the nature of roots of $2x^2 + 5x + 1 = 0$ (xi) Evaluate $(1 + \omega - \omega^2)^8$						
(xii)	Solve by completing the square $x^2 + 6x - 567 =$	= 0					
	tempt any eight parts.					8 × 2 = 16	
(i) (ii)	Define Identity. Give one example. Write $\frac{2x-3}{x(2x+3)(x-1)}$ in partial fraction form without $\frac{2x-3}{x(2x+3)(x-1)}$	out findi	ng constar	its.			
(iii)	If $a_{n-3} = 2n - 5$, then find <i>nth</i> term of sequence	e. (iv) Find	1 b if 5, 8 are t	wo A.	Ms. between a and b .	
(v)	If $y = 1 + \frac{x}{2} + \frac{x^2}{4} + \frac{x^2}{4}$, then find the interval in	n which	the series	is convergent.			
(vi)	If $\frac{1}{k}$, $\frac{1}{2k+1}$, $\frac{1}{4k-1}$ are in H.P, then find k .						
(vii)	In how many ways can 4 keys be arranged on a cir	rcular ke	y ring?				
(viii) (ix)	Find the number of diagonals of 12 sided figure. If $P(A) = \frac{1}{2}$; $P(B) = \frac{1}{2}$; $P(A \cap B) = \frac{1}{3}$, then find $P(A \cup B)$						
(x)	Prove that $4^{n} > 3^{n} + 2^{n-1}$ for $n = 2$ and $n = 3$	(xi) Expa	and $\left(3a - \frac{x}{3a}\right)^4$	by bin	omial theorem.	
(xii)	If x is so small that its square and higher powers	be negl	ected, the	$\frac{3a}{1}$ show that $\frac{1}{1}$	$\frac{-x}{x} = 1$	r	
1 A+	tempt any nine parts.	-	\ <u> </u>	V1-	+ x	9 × 2 = 18	
(i)	Prove that $\sin^2 \frac{\pi}{6} + \sin^2 \frac{\pi}{3} + \tan^2 \frac{\pi}{4} = 2$		(ii)	Show that	$\frac{1}{\sin \theta}$ +	$\frac{1}{1-\sin\theta} = 2\sec^2\theta$	
(iii)	Prove that $\sin(180^{\circ} + \alpha)$. $\sin(90^{\circ} - \alpha) = -\sin \alpha$.		(iv)	(iv) Find the value of cos 105°			
(v)	Show that $\frac{\sin 3\theta}{\sin \theta} - \frac{\cos 3\theta}{\cos \theta} = 2$		(vi)	Write domain and range of $y = \sin x$			
(vii)	Find the period of $\tan 4x$		(viii)	Draw the graph of $y = \sin x$ from 0 to π			
(ix)	In $\triangle ABC$ if $\beta = 60^\circ$; $\gamma = 15^\circ$; $b = \sqrt{6}$, then fi	ind a a	nd y				
(x)	Find area of $\triangle ABC$ in which $\alpha = 45^{\circ}17'$;	$\gamma = 30$	5°41′;	b = 25.4	(xi)	Define inscribed circle	
(xii)	Find the value of $\sec \left[\sin^{-i}\left(-\frac{1}{2}\right)\right]$	(xi		fine trigonometric equation. Give one example.			
NOTE		CTION	-11			3 × 10 = 30	
	E: Attempt any three questions. $3 \times 10 = 30$ Find the inverse of $A = \begin{bmatrix} 2 & 1 & 0 \\ 1 & 1 & 0 \\ 2 & -3 & 5 \end{bmatrix}$ and show that $A^{-1}A = I_3$						
	Prove that $\frac{x^2}{a^2} + \frac{(mx+c)^2}{b^2} = 1$ will have equal roots, if $c^2 = a^2m^2 + b^2$; $a \ne 0$, $b \ne 0$						
	Resolve $\frac{x^2+1}{x^3+1}$ into partial fractions. (b) The sum of three numbers in an A.P is 24 and their product is 440. Find the numbers. A number is chosen out of first fifty natural numbers. What is probability that chosen number is multiple of 3 or of 5.						
7.(a) (b)	1				numbe	er is mutuple of 3 or of 5.	
(0)	Show that $\left[\frac{n}{2(n+N)}\right]^{\frac{1}{2}} = \frac{8n}{9n-N} - \frac{n+N}{4n}$ where n and N are nearly equal.						
8.(a)	Prove without using calculator that $\sin 19^{\circ} \cos 11^{\circ} + \sin 71^{\circ} \sin 11^{\circ} = \frac{1}{2}$						
(b)	Find the area of the triangle ABC, when $\alpha = 35^{\circ}17'$, $\gamma = 45^{\circ}13'$ and $b = 42.1$						
9.(a) (b)	Prove the identity and state the domain of $\theta = \sin^6 \theta + \cos^6 \theta = 1 - 3\sin^2 \theta \cos^2 \theta$						
	Prove that $\tan^{-1} \frac{1}{11} + \tan^{-1} \frac{5}{6} = \tan^{-1} \frac{1}{3} + \tan^{-1} \frac{1}{2}$				4 / 1 St	A) 17000 (MIII TAN)	